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Abstract

The study presented here is related to the reduction of noise in factory halls. The type of factory hall considered here has

large dimensions and contain several industrial machines, running 24 h a day. A method is presented to determine the

angular directions which provide the main contributions to the sound levels at any point in the hall. These directions

correspond to the sources and their images on the walls and on the obstacles. The method is based on the use of cross-

correlation functions of sound signals measured on a microphone array. It is adapted to the constraints of the problem

(short measurement time, no possibility to stop the machines, small dimensions of the array, etc.). Experimental results are

shown first for several test cases carried out in a semi-anechoic room and in a rectangular room, and, then, for the case of a

surface-planing machine in a cluttered hall.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The study presented here is concerned with noise-reduction problems that are commonly encountered in
factory halls. These halls typically have large dimensions, reflecting walls, and they contain noisy engines or
machines that run constantly, 24 h a day. In many practical applications of noise abatement in factory halls,
the main point is not really to reduce the noise levels everywhere in the hall, but rather to protect some
particular work places. As a consequence, what is needed is generally not a full acoustic treatment of the entire
hall, but only a limitation of sound reflections on some surfaces in the hall. The reason is that the sound field,
at any point, is a combination of the various contributions from all actual acoustic sources and from the
reflections produced by the walls and obstacles present in the hall. Thus, to reduce the sound level at a given
point in the hall, one first thing to do is to determine the main directions of incidence from which energy
reaches this point. If these directions can be correctly identified, it is then possible to decide which machines
and which parts of the hall should be treated. The treatment may consist in partly or totally enclosing a
machine, in inserting acoustic screens between the source and the place to protect, in sticking absorbing
materials on the corresponding wall, etc.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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C. Noël et al. / Journal of Sound and Vibration 296 (2006) 518–538 519
In the present paper, a new method is described that allows one to determine the direction of incidence of a
sound, produced by a set of fixed sources, at any point in a large-dimension hall with highly reflecting walls.
The method is based on the measurements of the sound field by a microphone array, with the following
assumptions:
�
 the dimensions of the array must be kept as small as possible, as well as the number of microphones,

�
 the time necessary to run a complete set of measures must be as short as possible,

�
 measurements should be possible while the machines are constantly in action,

�
 the method has to apply to correlated fields, such as those produced by a sound source and its images.

An extensive review of the literature on the existing methods for sound-incidence identification reveals that
none can meet the requirements listed above.

Classical intensimetry techniques were first considered for this purpose, but it has been shown that they are
efficient mainly in the near field of a source, or in rooms with rather absorbing walls [1,2]. For these reasons
and because they are not selective enough, they were discarded.

Another group of theoretical methods, called matched-field methods, has also been developed, based on
an analysis of the sound in the frequency domain, to identify acoustic-wave directions. Most of them use
the cross-spectral densities of the sound signals measured with the help of an array. Among the most popular
are the Bartlett estimator, Minimum Variance Distortionless Filter (MVDF) and MUltiple SIgnal
Classification (MUSIC). They were first developed for periodic signals [3–8]. Bartlett estimator is not
adapted to the applications considered here because the number of microphones required for the
measurements is too large [3]. MVDF and MUSIC are not efficient to separate out correlated sound fields
[9–11]. Later on, these methods have been extended to the case of broad-band sources, using two different
approaches based respectively on incoherent and coherent focusing [12,13]. Both approaches are based
on a global cross-spectral density matrix which is defined as the mean value of the cross-spectral density
matrices obtained at all frequencies [14,15]. For incoherent focusing, this mean value is calculated as a
geometrical or an arithmetical mean value. For coherent focusing, the matrices are first multiplied by the so-
called focusing operators [16,17]. With this last approach, it is possible to determine the position of correlated
sources [18,19]. However, the number of sources must be smaller than the number of microphones. This
condition cannot be met in the case of a factory hall because of the number of machines and of the reflections
on the walls.

Identification methods have also been developed in the time domain. One group is based on the
measurement of impulse responses on an array. They are used to determine the positions of the sources and
their amplitudes or to analyze the directions and the spatial variations of a reverberant sound field [20–23].
This kind of technique is obviously not relevant in our case because, as mentioned above, industrial machines
cannot always be switched off and on again whenever needed for measurements. Another group is based on
the use of the time delays measured between all the pairs of microphones of an array [24,25].

The method presented here, called ISIT, belongs to this last group. The name ISIT comes from the French
expression for ‘‘identification of sources by a cross-correlation technique’’. It is an optimization method based
on the use of the cross-correlation functions of the signals measured on an array. The unknowns to be
determined represent the angular flow of energy received from each direction of space. They are obtained by
minimizing the difference between theoretical and measured values of a time integral of the cross-correlation
functions. The main directions that contribute to the sound pressure on the array are deduced from the values
of these unknowns.

Section 2 presents the theoretical development and the assumptions used to construct the method. This
leads to the minimization of an overdetermined system with constraints. The numerical aspects related to the
computation of the matrix of the system are studied in Section 3. Section 4 presents the criteria used to design
the array best fitted to the method. Section 5 examines how the method applies in practical cases where the
theoretical assumptions not all satisfied. Section 6 describes some experimental tests carried out for two simple
configurations: one source and its images in a semi-anechoic room first, and then one and two sources in an
reverberant rectangular hall. Section 7 presents the results in a more realistic case of a surface-planing machine
in a cluttered hall. Section 8 presents the conclusion of the study.
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2. Description of the method

The method consists in a comparison between calculated and measured values of time integrals of cross-
correlation functions. These time integrals are expressed as functions of the angular energy flow.

The first step is to obtain an expression of a cross-correlation function between two receivers, based on the
following assumptions:
�
 the receivers are in the far field of the sources,

�
 the sound field is approximated by a large number of plane waves,

�
 the sound field is homogeneous and anisotropic. This means that the cross-correlation function between

two points P and M only depends on the distance between these two points and on the angle between the
vector PM and the direction of propagation [26],

�
 the plane waves are uncorrelated and have ‘‘white noise’’ spectra.

The influence of these assumptions in the practical applications of the method is examined in detail in
Section 5.

The sound pressure is measured at N points corresponding to the N microphones of an array. Let xnðtÞ and
xmðtÞ, n ¼ 1; . . . ;N and m ¼ 1; . . . ;N, be the sound signals measured at two points Mn and Mm. If dnm denotes
the distance between Mn and Mm, the corresponding vector rnm is given by

rnm ¼ dnm½sin yc cosfc; sin yc sinfc; cos yc�, (1)

where the angles are defined in Fig. 1.
The expression of the cross-correlation function Cxn;xm

ðtÞ between the signals xnðtÞ and xmðtÞ is deduced
from equations similar to the ones presented in Refs. [26–28].

The pressure signals are assumed to be random and stationary in time. In the case of a single plane wave
characterized by two angles f and y or equivalently by the vector nðf; yÞ:

nðf; yÞ ¼ ½cosf sin y; sinf sin y; cos y� (2)

the sound pressure measured at a receiver M can be written:

pðM;f; y; nÞ ¼ Aðf; y; nÞ exp �2ipn
nðf; yÞ:OM

c

� �
, (3)

where c is the sound velocity in the fluid and n the frequency. OM is the vector between the space origin O and
the receiver point. The operator ‘‘.’’ represents the scalar product of the vectors n and OM.
n(�,�)
Mn

Mm

x

y

z

�

�c

�

�c

Fig. 1. Notations.



ARTICLE IN PRESS
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If the sound field is composed of an infinite number of plane waves, coming from all possible directions, the
sound field can be written as

PðM; nÞ ¼
Z
O

pðM;f; y; nÞ sin ydy df, (4)

where O ¼ f0pfp2p; 0pyppg is the space of the angles of incidence ðf; yÞ.
If all these plane waves are not correlated, the cross-spectral density between two receivers Mn and Mm is

equal to

Sxn;xm
ðnÞ ¼ EðPðMn; nÞP�ðMm; nÞÞ

¼

Z
O

EðjAðf; y; nÞj2Þ exp �2ipn
nðf; yÞ:rnm

c

� �
sin ydydf. ð5Þ

Furthermore if the expression EðjAðf; y; nÞj2Þ does not depend on frequency—which is the case of ‘‘white
noise’’ spectra—it can be written as

EðjAðf; y; nÞj2Þ ¼ aðf; yÞ. (6)

aðf; yÞ has the dimensions of ðpressureÞ2ðfrequencyÞ�1ðsurfaceÞ�1. It corresponds to an angular energy
flow [26].

The cross-correlation function is finally obtained by using an inverse Fourier transform

Cxn;xm
ðtÞ ¼

Z
O
aðf; yÞd t�

nðf; yÞ:rnm

c

� �
sin y dydf, (7)

where t is the time delay and d stands for the Dirac distribution.
Next the space O is divided into K cells Ol , l ¼ 1; . . . ;K , of constant width ðDf;DyÞ as shown in Fig. 2.

They are supposed to be small enough so that the energy flow aðf; yÞ may be approximated by a constant al

on each Ol .
This leads to

Cxn;xm
ðtÞ ¼

Xl¼K

l¼1

al

Z
Ol

d t�
nðfl ; ylÞ:rnm

c

� �
sin yl dyl dfl . (8)

Let DOl denote the integral on the cell Ol : DOl ¼
R
Ol
sin yl dyl dfl . The energy term El corresponding to a cell

Ol is defined by

El ¼ alDOl (9)
Z

O

X

Y

180°

Ω L

135°

90°

45°
θL

θL

θ

φLφL φ

90° 180° 270° 360°0

∆θ

∆φ

∆φ

∆θ

Fig. 2. Mesh of space O.
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and Cxn;xm
is written

Cxn;xm
ðtÞ ¼

Xl¼K

l¼1

El

R
Ol
d t�

nðfl ; ylÞ:rnm

c

� �
sin yl dyl dfl

DOl

. (10)

The coefficients El ; l ¼ 1; . . . ;K are the unknowns of the problem. If there is no energy coming from directions
corresponding to a cell Ol , the value of El is equal to zero. The largest values of El provide the main directions
that contribute to the sound level at the position of the array.

Let us remark that, in practical applications, several waves with different amplitudes can contribute
to the same integral on one cell Ol . The method will take their contributions into account as the contribution
of one and only one wave. This means that the size of the mesh must be chosen as small as possible.
The applications presented in the last sections of this paper provide examples of results in this kind of
situations.

The coefficients El are obtained by minimizing the difference between theoretical and measured values of
the time integral of the cross-correlation functions.

Before integrating, it must be remarked that, in the case of plane waves coming only from the direc-
tion defined by ðfi; yiÞ corresponding to a cell Oi, Cxn;xm

ðtÞ is zero for t outside the interval I i
nm ¼

½ti
minðn;mÞ; t

i
maxðn;mÞ� with:

ti
minðn;mÞ ¼ min

ðfi ;yiÞ2Oi

nðfi; yiÞ:rnm

c
;

ti
maxðn;mÞ ¼ max

ðfi ;yiÞ2Oi

nðfi; yiÞ:rnm

c

8>>><
>>>:

(11)

because of the Dirac function in formula (10). The integration of the cross-correlation function on this interval
I i

nm and the inversion of the integral and the sum give the following equation:

Ciðn;mÞ ¼
Xl¼K

l¼1

Elb
i
lðn;mÞ (12)

with

Ciðn;mÞ ¼

Z
I i

nm

Cxn;xm
ðtiÞdti, (13)

bi
lðn;mÞ ¼

R
I i

nm

R
Ol
d ti �

nðfl ; ylÞ:rnm

c

� �
sin yl dyl dfl dti

DOl

. (14)

Eq. (12) must be satisfied for every i ¼ 1; . . . ;K . The coefficients El can be obtained as the solutions of the
linear system:

Cðn;mÞ ¼ Bðn;mÞE (15)

with

Cðn;mÞ ¼ ðCiðn;mÞÞ; i ¼ 1; . . . ;K ; E ¼ ðElÞ; l ¼ 1; . . . ;K (16)

and

Bðn;mÞ ¼ ðbi
lðn;mÞÞ; i ¼ 1; . . . ;K and l ¼ 1; . . . ;K . (17)

This system is of order K. However, Eq. (15) must be satisfied for all pairs of microphones ðMn;MmÞ with
nam. This means that the coefficients El are solutions of a linear system of NcK equations, where Nc is the
number of pairs of microphones. This linear system is written

BgE ¼ Cg, (18)
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where the global vector Cg and the global matrix Bg are built from all vectors Cðn;mÞ and all matrices Bðn;mÞ
respectively:

Cg ¼

Cð1; 2Þ

..

.

Cðj; kÞ

..

.

CðN � 1;NÞ

2
666666664

3
777777775

and Bg ¼

Bð1; 2Þ

..

.

Bðj; kÞ

..

.

BðN � 1;NÞ

2
666666664

3
777777775
. (19)

Cg is a vector of order NcK . Bg is a rectangular matrix of order NcK � K . The unknown vector E is the
solution of the overdetermined system (18). It is obtained by solving a least-squares minimization problem
with constraints:

min
E
kBgE� Cgk

2 with ElX0; l ¼ 1; . . . ;K . (20)

This problem is solved by the non-negative least-squares algorithm (NNLS) described in Ref. [29].

3. Computation of the matrix B

The computation of the global matrix Bg is the main step of the numerical procedure. Two aspects are
presented here, the computation of the coefficients bi

lðn;mÞ of the matrix and the procedure chosen to
construct the global matrix.

3.1. Computation of the coefficients of the matrix Bðn;mÞ

As mentioned before, the global matrix Bg contains NcK2 coefficients. In the examples presented in this
article, the angular width of the cells Df and Dy are chosen equal to 10�. This leads to a number of cells equal
to 36� 18 ¼ 648. Also in the examples, the number Nc of pairs of microphones is equal to 105. This means
that the order of magnitude of NcK2 is around 41� 106. Therefore it is essential to develop a method to
drastically reduce the computation time for the bi

lðn;mÞ terms.
Each coefficient bi

lðn;mÞ is expressed in Eq. (14) as an integral over time t and over angles f and y. This
integral must be calculated with a very small time step because it includes a Dirac distribution. To reduce
computation time, several methods were developed and compared. The best results, for the criterion of
computation time versus accuracy, are obtained by using infinite series of Legendre polynomials. The main
steps of the method are presented here and the details are given in Appendix A.

Let us start with the cross-spectral function Sxn;xm
ðnÞ defined in formula (5):

Sxn;xm
ðnÞ ¼

Z
O
aðf; yÞ exp �2ipn

nðf; yÞ:rnm

c

� �
sin ydydf. (21)

In this expression, the exponential function is replaced by its series in spherical harmonics. After some
analytical integrations, Sxn;xm

ðnÞ is obtained as

Sxn;xm
ðnÞ ¼

Xl¼K

l¼1

El

DOl

Xp¼þ1
p¼0

ð�iÞpgl
pjpðkdnmÞ, (22)

where jp is the spherical Bessel function of order p and of the first kind. The expression of the gl
p coefficients is

given in Eq. (A.8) of Appendix A. Then, the cross-correlation function is expressed as the inverse Fourier
transform of Sxn;xm

ðnÞ. Again, some integrations can be done analytically and finally the integration of Cxn;xm

on the interval I i
nm yields

Ciðn;mÞ ¼
Xl¼K

l¼1

El

1

DOl

Xp¼þ1
p¼0

ð�1Þp

2
gl

p

Z
Ai

nm

PpðtÞdt, (23)
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where Pp is the Legendre polynomial of degree p and Ai
nm is the interval defined by

Ai
nm ¼ �

c

dnm

ti
maxðn;mÞ;�

c

dnm

ti
minðn;mÞ

� �
. (24)

Finally, from Eqs. (12) and (23), and for i ¼ 1; . . . ;K and l ¼ 1; . . . ;K :

bi
lðn;mÞ ¼

1

DOl

Xp¼þ1
p¼0

ð�1Þp

2
gl

p

Z
Ai

nm

PpðtÞdt. (25)

This formula is easier to compute than formula (14). It includes an infinite series and a simple integral. In our
examples, the series converges rapidly, it is approximated with no more than 50 terms. Formula (25) leads to
shorter computation time than formula (14).
3.2. Reduction of the order of the linear system

To obtain accurate results, the rank of the global matrix Bg must be as close as possible to the order of the
matrix. This means that Bg must be well conditioned. This matrix is built from the elementary square matrices
Bðn;mÞ defined by Eq. (17). The values of the coefficients and therefore the rank of the matrix closely depend
on the positions of the microphones. In particular, it is easily seen that two elementary matrices Bðn;mÞ and
Bðp; qÞ provide the same information if the four points Mn;Mm;Mp;Mq are such that the vectors rnm and rpq

are collinear, that is, if rnm ¼ arpq where a is a constant.
To obtain the highest possible value for the rank of Bg, it is necessary, first to carefully select the positions of

the pairs of sensors in order to maximize the ranks of the elementary matrices, and then to use a large number
of elementary matrices Bðn;mÞ. This implies that the global matrix is quite big. Therefore, a singular value
decomposition (SVD) method is used to reduce the order of the global linear system. This leads to a reduced
matrix Br of order K and a vector Cr of order K such that the linear system in Eq. (18) is replaced by

BrE ¼ Cr, (26)

where the singular values of Br are equal to the K largest singular values of the matrix Bg. The SVD method
is not used for the global matrix itself because of its large size. To avoid having to handle with too big a
matrix and in order to minimize the round-off errors, the SVD method is applied to submatrices of Bg in an
iterative way.

The computation of the global matrix is the part of the method that is the most time-consuming. This step
may take several hours (between 5 and 10) on a classical PC (450MHz, 256Mb) but the matrix is computed
only once because it depends only on the geometry of the array. In contrast, the minimization step runs very
fast and the coefficients El are obtained within less than 5min for each case.
4. Choice of an array

As said previously, for practical reasons, it was decided to keep the number of microphones and the
dimensions of the array as small as possible. The maximum number of microphones was restricted to 15 and
the maximum length of the array to 0.5m.

Several criteria have been considered to define the shape of the array and to determine the position of each
microphone. The two main criteria, which are detailed below, are strongly related to the ISIT method and its
numerical procedure.

The first one is related to the computation of the coefficients Ciðn;mÞ. They are defined as integrals over
intervals I i

nm of the cross-correlation function Cxn;xm
ðtÞ. Each function Cxn;xm

ðtÞ is measured with a sampling
frequency F e. Each interval I i

nm depends on several parameters, in particular the angular widths Df and Dy,
and the distance dnm. In order to compute accurate values of the integrals over I i

nm, these parameters cannot be
chosen independently. Here we have chosen a sampling frequency equal to 25.6 kHz and an angular width
Df ¼ Dy ¼ 10�. Several numerical tests have been carried out. They show that the integrals are fairly
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accurately computed if the distance dnm is larger that 0.2m. It was therefore decided to keep the distances
between all pairs of microphones between 0.2 and 0.5m.

The other aspect is related to the rank of the global matrix Bg. As seen in Section 3.2, it is necessary to keep
the number of collinear vectors as small as possible. Here, the positions of the microphones have also been
chosen in such a way that the logarithm of the ratio between the highest and the lowest singular values of the
global matrix Bg is smaller than 30 dB. This ratio is called the condition number of the matrix. Obviously, it is
not possible to relate it to the positions of the microphones in a straightforward way: For a given set of
positions, the value of the ratio cannot be a priori assessed. This limiting value of 30 dB has been chosen after
several series of tests and according to the values of signal-to-noise ratio in our practical applications.

Several microphone arrays have been numerically tested, in particular:
�
 a classical cross-shaped array with 13 microphones,

�
 a pyramid-shaped array made of equilateral pyramids, with 11 microphones (see Fig. 3). The length of each

side is equal to 0.3m and there are 64 non-collinear vectors,

�
 a spherical array with 15 microphones and a radius equal to 0.25m (see Figs. 4 and 5). The 15 microphones

are located on three parallel circles in such a way that the number of collinear vectors is kept to a minimum.
In this case, 75 vectors are non-collinear. The distances between the microphones go from 0.21 to 0.5m.

The three curves in Fig. 6 represent the values of the logarithm of the condition number obtained for these
three arrays. They are drawn as a function of the number of cells chosen for the angular mesh. The maximum
value on the horizontal scale (648 cells) corresponds to an angular step of 10� in both directions f and y. The
spherical array has finally been chosen because it provides the lowest value for the condition number of matrix
Bg and corresponds to a simple geometry. Let us remark that the choice of spherical arrays is also usual in
some beamforming techniques or decomposition techniques for diffuse fields (see Ref. [30] and references
within for example).

5. Discussion on the assumptions

In Section 2, several assumptions are made on the signals (white-noise spectra, uncorrelated plane waves).
These assumptions are not always satisfied in practical applications. The aim of this section is to examine the
Fig. 3. Pyramid-shaped array.
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Fig. 4. Spherical array.

Fig. 5. View of the spherical array.
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conditions for which the theoretical procedure may be applied or must be modified. The first hypothesis is that
the array is situated in the far field of the sources to be localized. This is generally the case.

5.1. Sources with a broad-band spectrum different from a white noise

One of the assumptions is that the signals have a wide spectrum with constant power density (white noise
type). This is not the case in practice. However, industrial machines are often broad-band sources and thus the
cross-spectral densities obtained from the signals received at each microphone can be ‘‘whitened’’ by a classical
technique, here a PHAse Transform is used [31]. This implies that the information on the phase of the spectra
is preserved, but the amplitudes may be lost after this step. If the method is applied to identify one source and
its images, because the spectra of the source and all the echoes have the same characteristics, they are
processed similarly at the whitening stage. In this case, the respective amplitudes are not lost. If the method is
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applied to two sources with different spectra, for example, a source A with a 0–5000Hz spectrum and a source
B with a 5000–10 000Hz spectrum, the method will provide the correct directions but will not provide the
respective amplitudes of the sources.

5.2. Sources with a narrow-band spectrum

If the emitted signals have a limited spectral bandwidth bd , Eq. (2) becomes

EðjAðf; y; nÞj2Þ ¼ aðf; yÞLðnÞ, (27)

where L is the function equal to 1 for n in the interval ½�bd ;þbd � and 0 outside. The cross-correlation function
becomes

Cxn;xm
ðtÞ ¼ 2bd

Z
O
aðf; yÞ

sin 2pbd t�
nðf; yÞ:rnm

c

� �

2pbd t�
nðf; yÞ:rnm

c

� � sin ydydf. (28)

In this case, erroneous directions will appear. As an example, let us take the simple case of a single plane wave
with a direction ðf; yÞ corresponding to a time delay t0 between microphones Mn and Mm.

If this wave has a broad-band spectrum, Cxn;xm
ðtÞ ¼ aðf; yÞdðt� t0Þ sin y. All coefficients Cjðn;mÞ are equal

to zero except those such that t0 belongs to I j
n;m. Let us recall that the intervals I j

n;m may overlap. For a given
pair ðn;mÞ, Cjðn;mÞa0 a priori means that cell Oj might correspond to the direction of the plane wave. Solving
the minimization system (Eq. (20)) will provide the correct unique solution ðf; yÞ.

If the spectral bandwidth is equal to bd , the cross-correlation reduces to

Cxn;xm
ðtÞ ¼ aðf; yÞ

sin 2pbdðt� t0Þ
pðt� t0Þ

sin y. (29)

Because of the shape of this function of t, integration on some intervals I j
n;m which do not contain t0 will lead

to non-zero coefficients Cjðn;mÞ. Fig. 7 shows an example of both cross-correlation functions obtained for
t0 ¼ 0:43ms as functions of time t. The solid line represents the delta function. The dashed line represents the
time function in Eq. (29) computed for bd ¼ 2 kHz. Both curves are normalized so that their maximum is
equal to 1. For both functions, integration on interval Gb gives a non-zero value. Integration on interval Ga is
zero for the delta function and non-zero for the other function. This will lead to erroneous solutions of the
optimization problem. Obviously the error made depends on the relative values of the bandwidth and of the
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width of the integration intervals. The integration intervals depend on the angular size of the mesh. This
means that the bandwidth of the signals emitted by the sources must be taken into account to choose the
angular size of the mesh.

In what follows, we present a numerical test that shows the influence of the signal bandwidth bd on the
solution E obtained for a given mesh. The angular width is 10� for f and y. The sound field is emitted by a
single plane wave of direction ðf0; y0Þ. The ISIT method provides a solution E. Because there is only one
source, all coefficients El should be equal to zero except one. Actually, as expected from the comments above,
several coefficients have values different from zero. The largest coefficient does correspond to the exact
direction ðf0; y0Þ. The curve in Fig. 8 represents the logarithm, multiplied by 10, of the ratio between the
second and the first largest coefficients of vector E. The curve is drawn as a function of bd , from 500 to
12 800Hz. For each value of bd , the value of the curve is the average of the values obtained over 20 tests
corresponding to 20 different directions ðf0; y0Þ.

For bd between 500 and 2500Hz, the energy level of the spurious directions vary between 0 and 10 dB below
the reference level. This means that if the bandwidth signal is less than 2500Hz, the method cannot separate
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erroneous directions from the correct direction. For bd larger than 4500Hz, the levels are 20 dB lower than the
reference level. The first erroneous value is much smaller than the reference value. This means that, for this
mesh, if the bandwidth of the signal is larger than 4500Hz, the method will provide satisfying results.

5.3. Correlated sources

As said in the introduction, in many applications, our interest is to use ISIT to determine the directions of
the main reflections on the walls of a hall. The reflected sound fields are emitted by the images of the real
source. The images are obviously correlated with the source itself. The point here is to examine how ISIT can
be applied to correlated sources.

In the simple case of two correlated point sources 1 and 2 in a free-field, it is possible to obtain an analytical
expression of the cross-correlation function. Cxn;xm

ðtÞ has four peaks. Two of them correspond to source 1 and
source 2, respectively. The other two are ‘‘cross-peaks’’ which appear because of interactions between sources
1 and 2. These cross-peaks can lead to the identification of two wrong directions. They correspond to two
delays tnm

12 and tnm
21 but do not correspond to real sources. However, it is possible to determine geometrical

conditions (on the respective distances between the sources and between the microphones) so that the two
peaks do not appear in the integration intervals ½�rnm=c;þrnm=c�. In the applications described here (halls of
large dimensions), these conditions are generally satisfied, except for a small number of pairs of microphones.
In this case, the algorithm is quite robust and ISIT do not identify erroneous directions. Also numerical tests
have shown that, in rectangular halls of large dimensions, the cross-peaks generally have small amplitudes and
therefore have a weak effect on the results. Another important point is that, in practical situations, sound
fields radiated by a machine in different directions are generally only partly correlated and this reduces the risk
of erroneous directions. From all these considerations, it was assumed that ISIT could be applied in the case of
correlated sources. The examples presented in the next section show that the results obtained are quite
satisfactory.

6. Experimental tests

Several experimental tests were run to check the validity of the method. Two examples are reported here.
The first example is the case of a point source in a semi-anechoic room. A panel of finite dimension had
been installed close to the source. In this case, the sound field measured on the array is approximated as
the sum of the direct field and the field emitted by three image sources. This may be seen as a problem with
four correlated sources. The second example is the case of respectively one and two sources located in a
reverberant rectangular room. In both examples, the sound field emitted by the sources has a broad-band
spectrum.

For the measurements, Bruël and Kjaer, 1=2 inch, microphones were used for the array and the signals were
processed through an OROS OR25 data system. The signals duration was 30 s. The sampling frequency was
Fe ¼ 25:6 kHz. The first step consists in computing the cross-spectral densities by using a classical
periodogram technique with 46 blocks of 16 384 points. The cross-correlation functions are obtained as the
inverse Fourier transform of the cross-spectral densities. They are computed by using the PhaT transform
(Phase transform).

The ISIT method is based on the measurements of the time delays between all the sensors or equivalently of
the phases of the cross-spectral densities. Some extra phase differences are introduced in the measurements
because of the equipment itself (microphones, data system, cables, etc.). These differences can be measured
with an intensity calibrator. In the examples presented here, they were smaller than 0:6� at 5 kHz. Therefore
they had a negligible effect on the accuracy of the results.

6.1. Source in a semi-anechoic room

In this example, a broad-band point source is located in a semi-anechoic room at 1.6m above the ground.
The emitted signal is a pink noise. A panel of finite dimension (1:25� 2m2) is situated at a distance of 1m
from the array. It is made of plywood covered with thin perforated plates.
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With this geometry, there are four main sources or paths to consider (see Fig. 9):
�
 direct path, which corresponds to the direction f ¼ 105�, y ¼ 85�,

�
 reflection on the ground, f ¼ 105�, y ¼ 135�,

�
 reflection on the panel, f ¼ 52�, y ¼ 86�,

�
 ground-panel double reflection, f ¼ 52�, y ¼ 128�.
Fig. 10 shows an angular map of the values of the coefficients ðElÞ; l ¼ 1; . . . ;K obtained from ISIT. Each
value corresponds to a cell Ol as defined in Fig. 2 and therefore to a direction ðfl ; ylÞ. The horizontal and the
vertical scales correspond respectively to the angle f varying between 0� and 360� and to the angle y varying
between 0� and 180�. The angular width of the cells is 10�. The values of El are presented on a logarithmic
scale. The levels are all normalized to the largest value of the coefficients El which is chosen as the reference
value. This means that the maximum level of 0 dB corresponds to this largest value. Four sources,
corresponding to the real source and three image sources, are identified quite accurately, with their relative
amplitudes. It can be seen that the highest energy cell (number 1) corresponds to the real source. The panel-
reflection (number 2) corresponds to a higher level than the ground-reflection (number 3). This was expected
since the panel is closer to the source and is more reflecting, in this experiment, than the floor of the semi-
anechoic room which is covered with a layer of linoleum. Cell number 4 corresponds to the double reflection
on the floor and on the panel.
Fig. 9. View of the experiment in the semi-anechoic room.
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In order to show the efficiency of the method, a comparison of the sound levels emitted by the four sources
and received on the array is presented in Fig. 11. The black bars correspond to the values of the levels deduced
from ISIT. The white bars correspond to the values computed directly by an image method. The input data of
the image method are the geometrical data, the amplitude of the source and the reflection coefficients of the
panel and the floor. The amplitudes of the real source and of the first two images are obtained with an
accuracy of 1 dB; the accuracy is of 2 dB for the amplitude of the third image.

Let us also add that, for all the tests conducted in the semi-anechoic room, the ratio between the real
directions of energy and the wrong directions is larger than 25 dB.

In this example, the results of the ISIT method have also been used to evaluate the energy absorption
coefficients of the floor and the panel. In the case of the floor, for instance, it is assumed that the energy of the
cell corresponding to the floor-reflection is proportional to the energy of the real source reflected by the floor
divided by the square distance between the ground image source and the center of the array. Here, the angle of
incidence of the ground-reflected ray is equal to 45�. The corresponding absorption coefficient deduced from
ISIT method is equal to 0.19. The value of the absorption coefficient of the floor has also been measured by a
two-microphone technique [32]. The average value, obtained over the frequency range 125–4000Hz, for an
angle of incidence of 45�, is 0.17 which is quite close to the value obtained with ISIT. This shows that the ISIT
method could also provide an interesting way to determine absorption coefficients of finite-dimension panels.

6.2. Sources in a reverberant rectangular room

In this second example, two uncorrelated broad-band sources are located in a rectangular empty room. The
dimensions of the room are 29:63� 7:7� 3:68m3. A 3D-scheme of the geometry is presented in Fig. 12.

The four lateral walls are named wall1, wall2, wall3 and wall4. They are made of plastered bricks. The room
has a concrete floor and an absorbing ceiling. The reverberation time measured at 1000Hz octave is equal
to 2 s. This corresponds to a rather reverberant room. Three cases were studied:
�
 the sound field is emitted by a Pioneer TSE1077 loudspeaker (source 1) located at a point
S1 ¼ ð3:63; 3:35; 0:05Þ,

�
 the sound field is emitted by a pressure driver (source 2) located at a point S2 ¼ ð6:35; 17:63; 0:05Þ,

�
 the sound field is emitted by sources 1 and 2 together.
The center of the array is located at M ¼ ð4:35; 11:63; 1:6Þ. All units are in meters. The positions of source 1
and source 2 respectively correspond to the directions ðf1 ¼ 262:9�; y1 ¼ 100:9�Þ and ðf2 ¼ 71:6�;
y2 ¼ 103:8�Þ.
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Fig. 12. Geometry of the reverberant hall.
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Fig. 13 presents the angular maps obtained for the three cases with ISIT. The numbers written next to the
cells correspond to decreasing orders of amplitude. In addition, in the case of source 1 alone, the theoretical
map (b) presents the sound levels computed directly by an image method. The aim was to compare the main
directions of energy obtained with both methods and not the exact values of the amplitudes. Indeed, it is
not possible to characterize the walls by some accurate values of reflection coefficients because they do not
have homogeneous properties, from both a geometrical and an acoustic point of view. Thus the walls were
simply characterized by constant reflection coefficients averaged over the whole frequency range. In this case,
the image method provides correct information on the directions of arrival but not on the amplitudes. The
directions of arrival presented on the experimental map (a) and the theoretical map (b) are quite similar.
The position of the source itself corresponds to cell number 2. Cell 1 is associated with the reflection on wall3.
Actually, cells 1 and 2 correspond to very close directions. Cells 3 and 4 correspond to reflections on wall1 and
wall2 respectively. Cell 5 corresponds to a reflection on the ceiling.
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In the case of source 2 alone (c), cell 1 corresponds to the direct path. Cells 2 and 5 correspond to reflections
on wall1 and wall2 respectively. Cells 3 and 4 correspond to ground reflections close to the source. Cell 6
corresponds to a reflection on the ceiling.

When both sources are used (d), the main directions of arrival are again well determined. The hierarchy of
the directions obtained for each source alone is globally found as expected, except for one or two reflections.
This could be explained by some interference phenomena between the two sources and their reflections.

In all the angular maps presented here, the scale of the normalized levels extends from 0 to �10 dB. Let us
recall that in the industrial applications of ISIT, the interest is to determine the sources or areas that must be
treated in order to reduce the noise levels at given places. We have therefore chosen to use the maps as follows:
The directions of energy are gathered into several sets. The first set includes the directions with amplitudes
between 0 and �3 dB, it corresponds to the sources and areas that must be treated first. The second set
includes the directions with amplitudes between �3 and �6 dB, and so on. This means that the method does
not need to be highly accurate in the evaluation of the amplitudes.

These examples show that ISIT method is an efficient tool for the kind of applications we are interested in.
A MUSIC algorithm associated with a coherent focusing method has also been applied to this configuration.
The positions of the main directions as well as their amplitudes are not determined properly. This could be
explained partly by the fact that MUSIC is not suited to the cases of reverberant halls where too large a
number of sources (or reflections) has to be determined.

Next section describes the results obtained in a more realistic case.
7. Case of a surface-planing machine in a factory hall

This example corresponds to the case of a planing machine in a very cluttered hall (see Fig. 14). The
dimensions of the hall are 26� 11� 8:3m3 (see Fig. 15). Its reverberation time in the 1000Hz octave band is
equal to 2.8 s. With respect to its volume, the hall can be considered as semi-reverberant or reverberant.

Fig. 16 shows the position of the machine and the position of the center of the array.
When operated, the planing machine generates several noise sources due to the tool itself (a chisel), the

electric engine, the vibrations of the structure, etc. In the present case, the noise of the tool however is the main
source. The position of the tool on the machine corresponds to the direction (ft ¼ 110�, yt ¼ 95�).

Fig. 17 presents, as a function of frequency, the sound pressure level measured at one point located 9.6m
from the machine (Ref. 2� 10�5 Pa). The three top curves represent the sound spectrum of the machine (with
an octave band, 3rd-octave band and narrow-band analysis). The bottom curve presents the spectrum of the
background noise measured in the hall. It can be seen that the spectrum of the machine is made of a
combination of a broad-band spectrum and a harmonic complex sound generated by the electric engine, the
tool itself, etc. Despite these emerging frequencies, ISIT can be used.

Fig. 18 presents the angular map obtained with ISIT. Cell 1 corresponds to the position of the chisel. Cells 1
and 4 correspond to close directions which are related to the position of the machine and to a first reflection on
wall4. Cells 2 and 6 are related to reflections on wall2, cells 3 and 5 to reflections on wall1. The ceiling does not
provide so much energy, only cell 9 corresponds to reflections on this surface.
Fig. 14. Views of the planing machine and of the industrial hall.
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Fig. 15. Geometry of the industrial hall.
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More detailed information may be deduced from this map by looking more closely to the geometry of the
hall. It can be seen for instance that cells 2 and 6 are located close to a highly reflecting steel door (wall2) and
to a window. Cells 5 and 9 correspond to an aluminum panel located above a window on wall1. Cell 3 is close
to a closet with a glass-door. The cells revealed by ISIT do correspond to highly reflecting areas of the hall.
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Fig. 18. Angular map of energy levels in the industrial hall. Same scale as in Fig. 10.
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8. Conclusion

The examples developed here show that ISIT is a promising tool to determine the sources or areas that
provide the main contributions to the noise levels measured at a given place. It was specially developed to
fulfill the specific constraints in industrial halls: The array must have small dimensions and a small number of
receivers, the machines operates 24 h a day and cannot be turned off and on, the halls are generally quite
reverberant.

All the results presented here were obtained from measured data. The first one in the semi-anechoic room
shows that the method can provide accurate results with correlated sources. The second one with two
uncorrelated sources in the empty hall shows that the method can determine a large number of reflections. The
third one obtained with the planing machine shows that ISIT still provides satisfactory results in conditions
very similar to realistic situations.

However, this method can still be improved. Three of the next steps will be to reduce the computing time of
the matrix deduced from the cross-correlation of the signals, to apply the method to more complicated cases
such as a reverberant hall with several machines, and to extend the method to narrow-band spectra.

Finally, from a theoretical point of view, it would be interesting to compare in more details the different
aspects of methods such as ISIT developed in the time domain and MUSIC developed in the frequency
domain. Obviously, these methods correspond to two different descriptions of the same kind of problem.
Examining and comparing their theoretical developments in detail will provide a better understanding of their
respective advantages and domains of application.
Appendix A. Computation of coefficients of matrices Bðn;mÞ

The cross-spectral density Sxn;xm
ðnÞ of two signals xnðtÞ and xmðtÞ is given by

Sxn;xm
ðnÞ ¼

Z
O
aðf; yÞ exp �2ipn

nðf; yÞ:rnm

c

� �
sin ydydf. (A.1)

This can be written as a sum of spherical harmonics, by using the following series for the exponential term
[33–35]:

expð�iknðf; yÞ:rnmÞ ¼ 4p
Xp¼þ1
p¼0

ð�iÞpjpðkdnmÞ
Xq¼p

q¼�p

Y pqðyc;fcÞY
�
pqðy;fÞ, (A.2)

where k ¼
2pn

c
. Y pq y;fð Þ is a spherical harmonic function defined by [36]:

Y pqðy;fÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþ 1

4p
ðp� jqjÞ!

ðpþ jqjÞ!

s
Pjqjp ðcos yÞe

iqf, (A.3)
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where Pq
p is the Legendre function of degree p and order q. jp is the spherical Bessel function of the first

kind [36].
By inverting sum and integral, the cross-spectral density can be written as

Sxn;xm
ðnÞ ¼ 4p

Xp¼þ1
p¼0

ð�iÞpjpðkdnmÞ
Xq¼p

q¼�p

Z
O

Y pqðyc;fcÞaðf; yÞY
�
pqðy;fÞ sin ydydf. (A.4)

If aðf; yÞ is assumed to be constant on each Ol , it becomes

Sxn;xm
ðnÞ ¼ 4p

Xl¼K

l¼1

al

Xp¼þ1
p¼0

ð�iÞpjpðkdnmÞ
Xq¼p

q¼�p

Z
Ol

Y pqðyc;fcÞY
�
pqðy;fÞ sin ydydf. (A.5)

Spherical harmonics Y pq are replaced by their expression (A.3) and al by El=DOl . The cell Ol is assumed to be
bounded in f by the angles fl

1 and fl
2 and in y by yl

1 and yl
2. This leads to

Sxn;xm
ðnÞ ¼

Xl¼K

l¼1

El

DOl

Xp¼þ1
p¼0

ð�iÞpjpðkdnmÞ

�
Xq¼p

q¼�p

Z fl
2

fl
1

Z yl
2

yl
1

ð2pþ 1Þ
ðp� jqjÞ!

ðpþ jqjÞ!
Pjqjp ðcos ycÞ

�Pjqjp ðcos yÞe
�iqðf�fcÞ sin ydydf. ðA:6Þ

The integral with respect to f is obtained analytically, and finally

Sxn;xm
ðnÞ ¼

Xl¼K

l¼1

El

DOl

Xp¼þ1
p¼0

ð�iÞpgl
pjpðkdnmÞ, (A.7)

where gl
p is equal to

gl
p ¼ ð2pþ 1Þ DfPpðcos ycÞ

Z yl
2

yl
1

Ppðcos yÞ sin ydy

"

þ 2
Xq¼p

q¼1

ðp� qÞ!

ðpþ qÞ!

sinðqðfl
2 � fcÞÞ � sinðqðfl

1 � fcÞÞ

q

�Pq
pðcos ycÞ

Z yl
2

yl
1

Pq
pðcos yÞ sin ydy

#
. ðA:8Þ

The cross-correlation function Cxn;xm
ðtÞ is obtained as the inverse Fourier transform of the cross-spectral

density. In formula (A.7), jpðkdnmÞ is the only term which depends on frequency (because k depends on n). The
inverse Fourier transform of jpðkdnmÞ can be written as

TF�1½jpðkdnmÞ� ¼
1

2p

Z 1
1

jp

o
c

dnm

� �
eiot do (A.9)

or

TF�1½jpðkdnmÞ� ¼
c

2dnm

1ffiffiffiffiffiffi
2p
p

Z 1
�1

J
pþ

1
2
ðoÞffiffiffiffi
o
p eio

c
dnm

t do, (A.10)

where o ¼ 2pn. Jp is the Bessel function of order p. The following relation [36]:Z 1
�1

Jpþ1
2
ðoÞffiffiffiffi
o
p e�iot do ¼

ð�iÞp
ffiffiffiffiffiffi
2p
p

PpðtÞ if t2p1;

0 if t241

(
(A.11)
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is used in formula (A.10). This gives

TF�1½jpðkdnmÞ� ¼

c

2dnm

ð�iÞpPp �
c

dnm

t
� �

if �
dnm

c
ptp

dnm

c
;

0 if not:

8<
: (A.12)

From Eqs. (A.7) and A.12, Cxnxm
ðtÞ is expressed for all t in ½� dnm

c
; dnm

c
� as

Cxn;xm
ðtÞ ¼

Xl¼K

l¼1

El

DOl

c

2dnm

Xp¼þ1
p¼0

ð�1Þpgl
pPp �

c

dnm

t
� �

. (A.13)

After integration with respect to t on I i
nm ¼ ½t

i
minðn;mÞ; t

i
maxðn;mÞ�, we obtain for all i ¼ 1; . . . ;K :

Ciðn;mÞ ¼
Xl¼K

l¼1

El

1

DOl

Xp¼þ1
p¼0

ð�1Þp

2
gl

p

Z
Ai

nm

PpðtÞdt, (A.14)

where

Ai
nm ¼ �

c

dnm

ti
maxðn;mÞ;�

c

dnm

ti
minðn;mÞ

� �
. (A.15)

Comparing Eqs. (12) and (A.14) gives

bi
lðn;mÞ ¼

1

DOl

Xp¼þ1
p¼0

ð�1Þp

2
gl

p

Z
Ai

nm

PpðtÞdt. (A.16)
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